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Accurate Resonant Frequencies of Dielectric
Resonators

P. GUILLON anDp YVES GARAULT

Abstract—The applications of dielectric resonators are currently
of considerable interest in microwave integrated circuits [1]-{4].

The design of a dielectric resonator depends on its natural resonant
frequencies. Since exact solutions of dielectric rectangular and
cylindrical resonators cannot be rigorously computed a new and more
accurate method has been developed to solve this problem. In this
method all the surfaces are simultaneously considered as imperfect
magnetic walls. )

Theoretical values agree very well with experimental results. The
difference being less than 1 percent.

1. INTRODUCTION

IELECTRIC RESONATORS made from low-loss
high-permittivity dielectric material offer the possibi-

lity for miniaturization of high-Q microwave filters [5]. Bell.

Laboratories has recently developed a consistent processing
technique for fabricating titanate ceramic having the desired
loss tangent in the microwave frequency region [6].

The resonant frequency of rectangular and cylindrical
diclectric resonators has been traditionally analyzed by
using the magnetic wall model [5], [7]-[10]. This method
gives a difference of about 10 percent between theoretical
and experimental results. ‘

A more accurate method based on the variation method
has been reported by Konishi [11]; theoretical and exper-
imental results agree with an error less than 1 percent.

Recently Itoh and Rudokas [12] reported a numerical

procedure based on this analysis of the propagation charac-
teristics of the three-dimensional cylindrical resonator
structure. Although this method was less accurate than that
of Konishi it provides a good agreement between exper-
imental and theoretical results.
- In this paper a new procedure is reported for predicting
the resonant frequencies of lower and higher modes of
isolated and shielded resonators of rectangular and cylindri-
cal shapes.

II. METHOD OF ANALYSIS

Let us consider a homogencous, lossless circular diclectric
resonator: relative permittivity ¢,, radius a, height H.

Four approximations may be defined to evaluate the
resonant frequencies of dielectric resonators.

Approximation 1: Assume that all the surfaces are perfect
magnetic walls:
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Fig. 1. The isolated cylindrical resonator with its lateral surface, which is

a perfect magnetic wall.
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Fig 2. The isolated cylindrical resonator with its flat surfaces, which are
perfect magnetic walls.

where 7i is the unit vector normal to the boundary and E and
H are, respectively, the electric and magnetic field vectors.

Approximation 24 : Assume that the lateral surface S,
(Fig. 1) is a magnetic wall and S, is an imperfect magnetic
wall.

Approximation 2, : S is a perfect magnetic wall and S is
an imperfect magnetic wall (Fig. 2).

Approximation 3: All the surfaces (S, ) of the dielectric
resonator are simultaneously imperfect magnetic walls.

To evaluate the resonant frequency with such approxima-
tions, we have to solve a system of two coupled characteristic
equations: one is obtained by assuming that only the lateral
surface (S;) is a perfect magnetic wall (approximation 2,);
the other, by assuming that only the flat surfaces (S,) are
perfect magnetic wall (approximation 2y).

The method used to improve the accuracy of the resonant
frequency consists of two steps.

1) Successively apply these approximations in order to
determine an effective dielectric resonator: radius a,, height
H,, relative permittivity ¢,. Then apply approximation 1 to
obtain the resonant frequency f, of the effective resonator.

2) Apply approximation 3 to the real resonator (a,H.¢,)
to obtain its resonant frequency f;.

The accurate theoretical resonant frequency f of the
dielectric resonator (a,H,¢,) is obtained by taking the mean
value of f, and f,.

To define the effective resonator, we proceed as follows.

Effective Radius: We solve approximation 2y to obtain



GUILLON AND GARAULT: RESONANT FREQUENCIES OF DIELECTRIC RESONATORS

the resonant frequency of the (a,H ) resonator. Let f, ybe this
frequency. Using approximation 1 to obtain a resonator
which has an f;, resonant frequency and a radius a this
resonator should have a height H,.

With approximation 2,, the resonant frequency of an
(a,H,) resonator is fi,.

The radius of a resonator of height H , resonating at f ,is
a, in approximation 1.

Effective Height: We solve the eigenvalue equation 2, to
obtain the resonant frequency f,, of the dielectric resonator
(a.H).

Now assuming the first-order approximation 1 we may
determine the radius a, of the resonator of height H which
resonates at f,,. Considering the new resonator (a, H) we
apply approximation 25 to determine its resonant fre-
quency. Let f,; be this frequency. The first-order approx-
imation gives the effective height H, of a resonator of radius
a, and of resonant frequency f, .

Frequency of the Effective Resonator: f, is obtained by
assuming that the walls of the effective resonator are perfect
magnetic ones. The resonant frequency obtained with sucha
consideration is f,.

To outline the method we worked out a table which is
available for all the resonant modes of a dielectric disk
resonator.

Determination of a, :

(@H) + 24— fin
(fima) + 1— Hy
(a.Hy) +2,— f1a
(f1a:H1) + 1> a,.
Determination of H, :
(@.H) + 2, f2
(f20H) + 1 a4
(ay,H) + 25— fou
, (f2msa)) + 1- H..
Determination of f, :
(@H)+ (1)~ 1.
Determination of f; :
(@H) + @)~ 1
Determination of the Frequency f of the Real Resonator:
f=3(f. +£)

This method outlined for a cylindrical resonator is still
valid for analyzing the resonant frequencies of rectangular
resonators. We shall study the eigenvalue equations which
are necessary to determine the resonant frequencies of the
modes of cylindrical and rectangular resonators.

III. THE CYLINDRICAL RESONATOR

A. The Isolated Cylindrical Resonator (a,H.t,)

1) Definition of Approximation 2 ; : We write the magnetic
and electric longitudinal components (Appendix). Substitut-
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ing these expressions into Maxwell equations and matching
the solutions at z = + H/2, we obtain the characteristic
equation which gives the resonant frequencies:

H= —ZBtan_ 2 1)

ko= oo, E=kE—k  F=ks-k @)
where k, is given by

Juk,a)=0, for TE,, , modes (3)

Ji(k.a)=0, for TM,, ., , modes )

and J, (k. a)is the nth order Bessel’s function of the first kind.

2) Definition of Approximation 2,: We assume that the
flat surfaces (S,) satisfy the open-circuit boundary condi-
tions, but the cylindrical surface does not.

a) Hybrid EH,,, , modes: All the modes, except those
with cylindrical symmetry are hybrid EH modes.

The expressions for E and H longitudinal fields compon-
ents are given in the Appendix. Using these relations, (20)
and (21), and Maxwell’s equations, we have a complete set of
field expressions.

Matching the electric and magnetic fields components at
r = a, gives the secular equation [13]

adie)  Ki(p,) } :J;(pi) K;(po)}

piJn(pi) Po " Kn(po) piJn(pi) poKn(pn)
n?p? (k% + k2|2
=—7c:,2_{ szsz T (5)
where
pi= kcia Po= kcoa (6)

pr-iz p=% )

idesignates the mode dielectric, and o designates the outside
dielectric.

b) TE,,,,, and TM, , , modes: For the case of TE, ,, ,
and TM, ,, , modes, relation (5) reduces to

Jo(pi) . Ko( o)

2 __ 1,2 2 2
kc,- = k082 - ﬂ kcg =

€
iy = T 7T FPo 8
Po) e Rilp,) ®)
for TM, ,, , modes
Jo(pi) 251 Ko(po)
D) = T Po 9
p Jo(pi) sz Ko(pa) ( )

for TE,,, , modes.

3) Definition of Approximation 3 : To explain the principle
of this approximation we consider the case of the dipolar
TE, , , mode.

We consider that all the surfaces (cylindrical and flat
surfaces) of the dielectric resonator (a,H,;) are simultan-
eously imperfect magnetic walls. So, in order to obtain the
resonant frequency, we have to solve the coupled equations

Jo(pi) — Ko(po)
To) ™ TP Kl 1)

(22 1+t ) = ) e-n a
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Fig. 3. Resonant frequencies of the TE,,, mode of isolated cylindrical
resonators.

Equation (11) is obtained by substituting «’s value into (1).

4) Experimental Results: Using approximations 1,2,,2p,
and 3, we have realized a computer program which permits
us, by applying the method described in (7), to obtain the
resonant frequencies as a function of the parameters of the
dielectric resonator. The results obtained for an isolated
resonator are given in Figs. 3 and 4.

B. The Shielded Cylindrical Resonator

1) Definition of Approximation 2y for a Resonator Placed
in a Microstrip Structure (Fig. 5): The effect of the metallic
walls is to modify the exponential decay of field components
outside the resonator. The tangential components of an
electric field must vanish on perfectly conducting surfaces.

Matching tangential components of electric and magnetic
fields at the boundaries results in a set of linear equations.
The characteristic equation which gives the resonant
frequencies of TE, ,, , modes is then

(ﬁ tan ﬁ—g- tanh a3 H — cx3) : (a1 tan ﬂg-i- B tanh ﬂd)
+ (ﬂ tan Bg~ tanh oy - d — ocl)

. (a3 tan ﬂg + p tanh a3h) =0 (12)
where
0(% - kc2 - k383

af = k2 — k2e,.
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Fig. 4. Resonant frequencies of the HE,,, and HE,, ,, modes of an
isolated cylindrical resonator for ¢, = 100.
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Fig 5. The shielded cylindrical dielectric resonator.

The method described in Section I1 is applied but now we
use (12) and (9) to calculate f, and f; and thus fof the TE,, ,, ,
modes. Theoretical results are presented in Figs. 6 and 7.

Fig. 6 indicates a very important property of the resonant
frequency behavior of the two lowest order modes with D/H.
The HE,,, is the lowest frequency mode for (D/H) < 1.42.
Above (D/H) = 142, the TE,,, mode becomes the lowest
frequency resonance. In the vicinity of (D/H) = 1.42, where
the modes overlap, it is possible to use a single dielectric
resonator as a dual-mode resonator in order to do two-pole
bandpass filtering for wider bandwidths.

IV. THE RECTANGULAR RESONATOR

A. The Isolated Rectangular Resonator

The method outlined above is also available to determine
the resonant frequencies of a rectangular resonator.
1) Definition of Approximation 2y
a) TE,,, , modes: To determine approximation 2 ; we
assume that the a and b surfaces satisfy the open-circuit
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Fig. 6. Resonant frequencies of the TE,,, and HE,, modes of a
shielded cylindrical resonator for &, = 100.
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Fig. 7. Resonant frequencies of the TE,, , modes of a shielded cylindrical
resonator for different thickness of the substrate.

boundary conditions (Fig. 8) while the fields decay exponen-
tially along the surfaces perpendicular to the 0z propagation
axis. The eigenvalue equation, (1), is still available to

Fig. 8. The isolated rectangular resonator.
4X
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| agnetic walls
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Fig. 9. The isolated rectangular resonator with two perfect magnetic
walls.

determine the resonant frequencies of a dielectric rectangu-
lar resonator:
2

n m
k2 752 (a2 + F) (13)
b) Hybrid modes: More generally and for modes other
than TE and TM modes, we can study the case for which two
surfaces of the section satisfy the open-circuit boundary
conditions.

As shown in Fig. 9, let y=0, b and z =0, and the H
surfaces be perfect magnetic walls. The longitudinal E and H
fields obtained with these conditions are given in the
Appendix. Substituting these components’ values into Max-
well equations and matching at x = +a/2, we obtain the
characteristic equation

, 1 1 k2 k. k.
pk? (k_fl + k—f;) + ke, ( Z 4 %) k;tan kxla/2)

K2, keke, 1
X P X = 4
— ke (k4 ek ka0
with
ki, =kiea— (k2 + B?) K2, — (kI + B7) — kley,
mn
ky —_ T

This relation can be applied to the special case of LSE,
and LSM, modes, respectively, with longitudinal electric
and magnetic fields and with E, and H, equal to zero.

The characteristic equation (14) becomes

2 _y ks 15
a= Etan kxz ( )
for LSE, modes
a= 2 1
kxz ¢ - & & (16)
&4 kxz

for LSM, modes.
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Fig. 12. The shiclded rectangular resonator.
TABLE 1
Experimental f fe - fex
L mm D mm €y Fe £ MHz ————Ef 4
MHz exp exp
5 7 10 38 4705 4660 1
i 8,4 15 38 3293 3315 0,7
7 15 38 3420 3450 1
4 10 ‘38 5326 5372 0,9
3L
5 15 66 2860 2850 0,4
21
b=6mm 7 10 66 3540 3506 1
Hmm
i ! ! i -
1 5 10 15

Fig. 10. Resonant frequencies of the TE,, , mode of an isolated rectangu-
lar resonator.
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Fig. 11. The isolated rectangular resonator with two imperfect magnetic

walls.

We have given in the Appendix the eigenvalue equation
for hybrid modes when the surfaces x = +a/2andz =0, H
satisfy the open-circuit boundary conditions, (28).

Using the method described previously (Section II) we
have evaluated the resonant frequencies of an isolated
rectangular resonator (Fig. 10).

2) Definition of Approximation 2,, : Only terminal sur-
faces (z=0, z= H) (Fig. 11) of a rectangular resonator
satisfy open-circuit boundary conditions.

We write the expressions of both the longitudinal and
tangential components in each medium (Appendix), and,
matching them simultaneously at the planes x = 0,a and
y = o,b, obtain a determinant D (Appendix).

The characteristic equation which gives the resonant
frequencies of hybrid modes of such a resonator is obtained
from the requirement that D vanishes.

B. The Shielded Resonator

1) Definition of Approximation 2y :
a) TE, , , modes: If the rectangular resonator is in a
microstrip structure, relation (12) is also available but it is

now necessary to replace (x,,/a)? by n2((n%/a*)-+ (m*/b?))
in the a; and o3s values.

b) Hybrid modes: We consider the geometrical struc-
ture shown in Fig. 12 and determine the fields in each
medium (Appendix). After having determined the tangential
E and H components and matching them at the boundary,
we obtain the characteristic equation necessary to calculate
the resonant frequencies of the hybrid modes of a shielded
rectangular resonator:

k2 k2. k. _k
g3 4 g T3ty Tt
k?Z ! kﬁl k31k32
21

. 3 ) N
tan kxza/z tan kx11 &, tan kxza/ tan kx11 0

(17)

V. EXPERIMENTAL RESULTS

A. Isolated Resonator

We give results for the dipolar TE,,, mode of the
cylindrical resonator in Table 1.

A comparison shows that experimental and theoretical
results agree within 1 percent.

Cohn has shown in his report [5] that to obtain good
resonance frequencies by using approximation 2y it is
necessary to multiply the relative permittivity of the resona-
tor ¢, by 0.875. Our method confirms this value since we find
a factor equal to 0.870.

B. Shielded Resonators
Resonator in a Microstrip Box: In Fig. 13 we have
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Fig. 13. Experimental resonant fiequencies of the TEy,, modes of a
shielded cylindrical resonator.

represented the experimental and theoretical variations of
the resonant frequencies of a dielectric resonator as a
function of the distance between the resonator and the
ground plane. Experimental and theoretical resuits agree
very well.

V1. CONCLUSION

The methods allow us to obtain with good accuracy the
resonant frequencies of isolated and shielded resonators;
this is important for the development of microwave in-
tegrated filters using stable dielectric resonators.

APPENDIX

A. The Cylindrical Resonator

1) The Isolated Resonator:
a) Definition of approximation 2 : Inside the dielectric
sample, —H/2 < z < + H/2,

E, = J,(k.r) sin nB{y, cos Pz + y, sin fz}
H, = J,(k.r) cos nf{y; cos Bz + x4 sin fz}.  (18)
Outside the dielectric sample, z < — H/2 and z > H/2,
E., = yxsJ.(k.r) sin nfe™*
H, = y¢Ju(k.r) cos nfle”*. (19)

% (i = 1,2,...,6)areconstant values, with w and f as given in
relations (3) and (4).

b) Definition of approximation 2,: For hybrid modes
EH,,, ,, inside the rod, r < g,

E, = A,J,(k.r) cos nfe i¥=

H, = B,J,(k.7) sin nfle” 7#= (20)

outside the rod, r > q,
E, = C,K,(k,,r) cos nfe =
H, = D,K,(kr) sin nfe 7=, (21)

K, (k.,r) is the modified Bessel’s function of the second kind
or the hyperbolic Bessel’s function of the second kind.
B. The Rectangular Resonator

1) The Isolated Resonator:
a) Definition of approximation 2, for hybrid modes:
Inside the dielectric sample, —a/2 < x < a/2,

E, =E, cos ky,x cos k,y

H, = H,sin k, x sin k,y (22)
outside the dielectric sample, x < —a/2 and x > a/2,
E, =E,e™™ *cos k,y
H, = H,e™ *sin k,y. (23)

b) Secular equation when the surfaces x = +a/2 and
z=0,H are perfect magnetic walls:

1 1 K2k, k

22| e 2 y2 Y17'y2
Bokz (kC21 + kczz) kie, (kcz2 + _kflkfz tan kyzb)
k2 k, k 1

_ 2 oyt y17y2 — 24

kot (k;‘l k2 k2 tan kmb) 0 @4

with
ky, = ke, — (ki + B?)
k§1 = (kf + B?) — kley.
c) Definition of approximation 2,,: Inside the
resonator

H,,=H,sin k,,x sin k,,y

E,,=E, cos k,,x cos k,, y. (25)
Outside the resonator, x > a/2 and y > b,
H, = H,e **sink,y
E, =E ;e " cos k,,y
H, = Hse ®¥sink,x
E,, = Eje™™¥ cos k,,x. (26)

2) The Shielded Resonator:
a) Definition of approximation 2, for hybrid modes:
Inside the resonator, — (a/2) < x < (a/2),

E., = E, cos k,,x cosk,y

H,, = H, sin k,,x sin k,y. 27
Outside the resonat(;r, (@2)<x<@d-1)
E, =E,sin k, (d — x) cos k,y
H, =H, cos k. (d — x)sin k,y. (28)
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C. Determinant D

1 a 1 a
k_flﬁk“ cos k,, 5 k—czlcos k., 2
. a Bk, . a
k—czza)azkx1 sin k,, 3 — kftl sin k., 2
Bk, . U,
kfil sin k, b k—czlsm k, b
we Bk
—2cos k, b | —cos k, b
ct , c1

with
K2 = k2o, — B2 = K2, + K2,
K=K ey — B2 = K2 + K2
k2 = k2 ey — B2 = K2, + k2.
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